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In dimensional variables the solution takes the form (r<r* = @) 

The corresponding schematic graphs of the density, pressure and velocity distribution are 
giveninFig.4 (the symbols accompanying the curves are the same as in Fig.3 f= (28 + 3)6-'). 
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INVESTIGATION OF A THREE-DIMENSIONAL HYPERSONIC VISCOUS SHOCK 
BLUNT BODIES AROUND WHICH FLOW OCCURS AT ANGLES OF ATTACK AND 
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Translated by L.K. 

LAYER ON 
SLI PPRGE* 

The three-dimensional hypersonic flow of dissociating non-equilibrium air 
past smooth blunt bodies with a catalytic surface is considered. An 
approximate numerical method of solving the equations of a hypersonic, 
three-dimensional viscous shock layer (SL for short) is proposed, allowing 
the study of flows not possessing planes of symmetry. The method is based 
on introducing, on the body surface, an orthogonal @,+I), coordinate system 
attached to the stream lines. The tangents to these stream lines are 
parallel to the incoming flow velocity vector component lying in the plane 
parallel to the body surface. The system of equations is written in this 
coordinate system, and derivatives with respect to the transverse coordinate 
21 of all functions sought are all omitted with exception of the pressure 

P and the transverse component ua of the velocity vector. The derivative 
au=/az= is found from the momentum equation in the zp direction differentiated 
with respect to za and simplified appropriately. The resulting system of 
equations is identical with the initial system near the critical point 
and the planes of synnnetry, provided that the latter exist. Some results 
of computing flows at different angles of attack and slippage are given 
for elliptical paraboloids with various cases of catalytic reactions 
taking place on the body surface. 

Flows past wings of infinite span, for angles of attack and slippage 
were investigated in /l/. Three-dimensional flows with a plane of symmetry 
were studied in /2-4/, a triagnular wing at large angles of attack was 
considered in /2/ and a body of complex shape was considered in /3, 4/. 

1. Formulation of the problem. The equation of a SL can be written, taking the 
chemical non-equilibrium equations and multicomponent diffusion into account and neglecting 

*Prikl.Matem.Mekhan.,50,1,110-118,1986 
**Eleanor Arkad'evich Gershbein (1937-1985) was the author of a monograph on hypersonic aero- 
dynamics and of a number of fundamental papers on the theory of boundary and shock layers, gas 
dynamics and heat transfer in multicomponent gas mixtures. 



80 

the baro- and thermodiffusion and diffusive thermal effect, in the form 

-f&~ij/~)=o, ~A$cW=-$ 

p(Duv+ A 2 tWu~)=-eamV-a,,%+$ 
(es) 

pe,DT = 2&D* P + 

?.7 
k=l 

pDc*+~=wi’, i=l , . . ..N-Ns 

P&~*+~=O, j=i,...,Ne--1 

Here and repeated indices denote summation, and no summation is performed over the indices 
enclosed within the round brackets;the Latin indices take the values 1, 2, 3 unless otherwise 
stated, and the Greek indices take the values 1,2;&g are the coefficients of the first 
quadratic form of the surface; the form of the coefficients A,B’, dependent on the metric will 
be given below; V,ti,eV,un are the physical coefficients of the velocity vector corresponding 
to the axes 2',xa,e2J, p~,,V,~P,p,ple, T,T,c,T,h are, respectively,the density, temperature and 
enthalpy of the gas mixture consisting of N chemical components; p (T,)p, h, c,c,, u, m are the 
viscosity and thermal conductivity, specific heat capacity, Prandtl number and molecular 
weight of the mixture; cl, ml, cpT,,hjo, up,+,, pmV,Itl: p,V,w,‘l(eR,) are the mass concentration, 
molecular weight, specific enthalpy and heat capacity, normal component of the diffusion flux 
vector and the rate of formation of the j-th component, ck*, p,V,Za* is the concentration and 
normal component of the diffusion flux vector of the k-th component, Ne is the number of 
elements, Dlj, St, (i, j = 1, . . ., N) are the binary diffusion coefficient and Schmidt number; 
RG= 2c,R is the universal gas constant and V, is the modulus oftheincoming flow velocity 
vector. The indices oo,w refer to the parameters in the incoming flow and on the body 
surface, and the index s denotes the gas parameters behind the shock wave. All linear 
dimensions refer to the characteristic dimension Ror representing one of the radii of curvature 
of the blunt part of the body. 

In considering the chemical reactions we shall assume that we have, in the shock wave, 
the chemical components N,, N, O,, 0, NO between which dissociation-recombination reactions 
take place of the form A.+ M Z 2A 4-M where A,, A,M denote, respectively, the molecules 

Np, O,, atoms N, 0 and a third particle which may be represented by an of the five components. 
We also have the dissociation-recombination reaction of the form NO + M C’ Ni-0 f M and 
exchange reactions NO + 0 F! N + O,, NO + N ;2 0 + N,, N, + 0, t 2N0. 

The dependence of the rate constants of the forward and reverse reactions on temperature 
was taken from /6/. 

Incomputing the specific heat capacities and enthalpy of the air components, the data 
of /?/ were used. It was assumed thattheinternal degrees of freedom of the molecules were 
excited in the equilibrium mode. The values of the reduced collision integrals Q&E)* (T) 

necessary to compute the transport coefficients were approximated in relation to the reduced 
temperature T= kTle, using the data of /S/ for the Lenard-Jones potential. The values of 
the force constants were taken from /9/ and the transport coefficients were calculated using 
the formulas of /lo, ll/. 
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The generalized Rankine-Hugoniot conditions are used as the boundary conditions for Eqs. 
(1.1) on the shock wave for 2 = z:(ti, 2'). They have the following form in the supersonic 
approximation in the {xi}-coordinate system: 

ucos (20 - U-V) = + g, P = (u..‘)’ 

l&a* (Cf - crca) + Ii = 0, i=l, . . ..N-NE 

u,8(cj*-&+Ij*=0, j-1, . . ..Ne-1 

When the boundary conditions on the body surface and given, we shall neglect the slippage 
rate, the temperature jumps and the concentrations of the components. The boundary conditions 
for the velocity components on an impermeable surface are 

39 = 0, ua = 0, us = 0 

The boundary condition for determining the equilibrium temperature on the surface of the 
body, written ignoring the seepage of heat into the body, has the form 

q = I’T’, r = 2e~~T,‘/(p,V~~) (1.3) 

@z are the surface blackness coefficients and (us is the Stefan-Boltzman constant). 
When heterogeneous catalytic reactions take place on the surface of the body, we have 

Ii = ri', i = 1, . . ., N - NE (1.4) 
II* = 0, j = 1, 2, . . ., Ne - 1 

Here p,V,q’ is the surface rate of formation of the i-th component resulting from all 
heterogeneous catalytic reactions. 

Two models of the first-order reaction were considered, with constant or temperature- 
dependent rate constants of the heterogeneous catalytic reactions: 

ri'= --pKwcl, i = 0, N, NO (1.5) 
Here 

V,Kw,= J:m/sec, V,KwN = 1 m/set (model 1) 

or 

K,, = ?‘z a,exp a0 = 16,0, aN = 0.071 

* = 0, N; Eo = 10271 Ic, EN = 2219 K, where Tk is the temperature in degrees K (model II /12/). 
It was assumed in both models that rio = 0. 

2. A method of solving the SL equation. Simplifying the initial formu- 
lation. We use the system ~1, x*> as the surface coordinate system attached to the stream 
lines (x1 = con&). The tangents to these lines coincide with the components of the incoming 
flow velocity vector lying in the plane tangent to the body surface. The numerical and 
approximate analytic solutions show /13/ that at small values of Re the stream lines in the 
shock layer differ little from the basis lines. 

Let us write (1.1) in the given ($,z*) coordinate system and neglect the derivatives 
with respect to x* of all functions except P and zag. We further introduce WE 8ua/axa. We 
determine the latter by applying the operator ,3/3x * to the momentum equation projected on to 
99 and neglect the derivatives with respect to Zof the required functions. 

As a result we obtain the following system (&SE alI, h,iEa,,): 
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i=N-Ne,...,N 

In writing down system (2.1) we used the orthogonality of xr', x8 on the surface. 
The boundary conditions for system (2.1) remain as before ((1.2)-(1.511, and the boundary 

conditions for w are obtained by differentiating (1.2) with respect to z 

w = 0, x*=0; I aw 
w=m= x8 = x.8 (xl, I*) 

Here we assumed, by virtue of the choice of xr and ti that lad = 0. We can obtain 
aPI&’ and @Pl(~xB)* using the fifth equation of system (2.1) differentiated with respect to 
X8 and simplified in a similar manner. However, to simplify the problem we have used Newton's 
formula to specify the pressure gradient components 8PlM. 

It should be noted that in boundary-layer theory the method of axisymmetric analogy is 
widely used. In this method the equations are written in a coordinate system attached to the 
stream lines of the inviscid flow, and terms containing uland a/8xn are omitted. The greatest 
error of the method can occur near the critical point, near the line of flow (us =O, &A~/&~ = 
0 (1)) etc. Unlike the method of axisymmetric analogy, the present method, which can be used 
to solve the equations of three-dimensional boundary layer, becomes exact near the plane of 
symmetry of the flow (provided that @P/(~z*)~ is given by Newton's formula). 

Calculation of the metric coefficients. The coefficients Aae’ have the following 
form in the x1, 39 coordinate system orthogonal to the body surface /5/: 

A& - 2Am== -&-(Bzcz), A&)=@ A%=& 

We find h,,&/&@,bM as follows. Let the surface S be given in a Cartesian coordinate 
svstem bv the eauation ZJ = f (z1.A Parametrizing the surface S in the usual manner p = p, 
~=f(~l:$) (the g axis is' directed along the normal to the body), we obtain the 
of the first and second quadratic form (in the yl, y*, ys system) 

a,, = 1 +(q,)", em=qlga, baE= --q&l/a 

a = det 11 aa6 11, qa= af/%P, qaB = ~af/W‘@/f’ 

Let the unit vector of the incoming flow in the system 21,z*,zs have the form 
v;v,'= 1. Then its components u-l, ums, u,* in the system y', us, y8 will be 

au,'=(1 + q18)vor- q1qnVo' + 4J1V08= V' 

auoot = (1 + ql") Voa - qiqi4rVo’ + qaV0’ E V’ 

1/r urna = q1Vo’ + qzvoa - vos 

coefficients 

.(2.3) 

v, = V,bl, 

The vector orthogonal on the surface to the vector (u_~,u_~), has the components (ul/l/z, 

UVJG) 

U' = + (Q*VoS + V0%), us = T (QrVc#S + Vo') 

Let x1, 39 be the system introduced in Sect.2. Then 

w 
azlx. 

_ hl ya @Ia 
I/K I fT* 

VI S (q1VoS + vo’)* + (qoVo* + Vo’)e + (qnV0’ - q1v02)2 

(2.4) 

To find &we will use a method similar to that in /14/. We assume that the functions 
ya(xl,ze) are sufficiently smooth and, that inverse functions fl (yl,yS) exist. Let 

(2.5) 

(2.6) 
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In (2.6) we have used (2.4). Assuming that ~~r/~~l&rr and P~a/~zaQr are continuous, we 
obtain 

-$-+G$=F$. 

Substituting (2.5) into (2.6) and (2.7), we obtain 

,(2.7) 

(2.8) 

Let us construct the solution of (2.8). Let y'(s,r),,y'(s,~) be a solution of the set of 

equations for determining the stream lines 

@=/~=V=(Y', Y"), ~~(6, r) = ?/o"(r) 

Then 

h,+ (0, t) = ho* (t), ds/dx’ = k~/(aV;“) 

We can find hris the same manner, although we shall do 

it follows that the first integral of (2.9) had the form 

Choosing 

where we have 

jvo* + Vo’u’ + VO’Y’ = g (2’) 
g(z') = (2')*/2, we obtain 

(9)' = 2 (V&/l + IV -I- VO') 
v, 

gl~(51,5')=a=B(y',y*)~~= a 

used relations (2.3). Then 
h’ = (g”)‘. = z’a’lsVf/. 

it differently. Since 

(2.9) 

(2.10) 

Now we can find all the coefficients AM' as functions of #rru', using the formulas for 
passing from one coordinate system to another 

and calculating the derivatives fromtheformulas 

a a# 8 -=- 
axa aP P 

where @B/ati are obtained from (2.4). 

3. Numerical solution. To obtain the numerical solution, we have introduced new 
Dorodnitsyn-type variables 

~=&&adz', 

i+* 

Ea=2", A= p?&dx= 
s 

0 0 

andnewunknown functions by means of the formulas 

(34 

T = T+ (El, &‘) 8, l&*1 = 2’. II*’ = xl, UP = b,, T+ = (lb’)’ 

X,=+Zi, i=i ,..., N--e; 

Xj*=FZj*; j=i,...,N~ 

The resulting system was solved using the method given in /l/. 
We have taken, as initial conditions, the solution of the SL equations near the critical 

point, written in the coordinate system associated with the principal curvatures. Next the 
streamlines were found, the metric coefficients and coefficients of the equations arecalculated, 
and SL was solved along each fixed streamline. 

As an example we considered flows past elliptical paraboloidswhoseequation in a Cartesian 
coordinate system attached to the apex was 2rr- (II)*+ k(z*)* where k = RJR,, R, = R, = 0.5 m. The 
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unit velocity vector of the incoming flow was given in terms of the components (VP') in a 
Cartesian coordinate system. 

g/cm3, V,= 7.25 km/set. 
The parameters of the incaning flow were as follows: Vo.= 5.9.io-s 

and the blackness coefficient was al = 0.85. 

Fig.1 Fig.2 

Fig.1 shows the streamlines a*=coaat (the solid lines) computed for the case of flow 
past an elliptical paraboloid k= 0.4 at an angle of attack equal to 45', V,= (@Z,O,r/%/Z)(here 
and henceforth 1~1, lo' are the coordinates of the critical point). The figure also shows the 
isolines of thermal fluxes qr (the dashed lines, the number accompanying each isoline is 
equal to the thermal flux relative to the thermal flux q0 at the critical point qo=34.5 wt./cm2) 
calculated for model II of the catalytic activity of the surface. For some of the streamlines 
the maximum of the thermal flux is displaced in relation to the critical point, and the absolute 
maximum lies in the plane of synnnetry. Thus we have a whole region bounded by the isoline 
Qr = 1.0, in which the thermal flux is greater than the flux at the critical point. 

t 0 

0.85 

Fig. 

Fig.2 shows the streamlines t~=coast (the solid lines) and the isolines of thermal fluxes 

4r (dashed lines) of the case of flow past an elliptic paraboloid k= 0.5 at the angle of 
attack and slippage, v,= (fl3,1/33.fii3) for model I of heterogeneous catalytic reactions. 
Here we also have a region with thermal fluxes greater than the flux at the critical point 
(qO = 21.3 wt./cm') . 

Fig.3 showsthedistribution of qr along some streamlines, with the curves 1-8 correspond- 
ing to the curves l--(1 of Fig.2. 
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EFFECTS OF LOCALIZATION AND FORMATION OF STRUCTURES DURING THE COMPRESSION 
OF A FINITE MASS OF GAS IN A PEAKING MODE* 

M.A. DEMIDOV and A.P. MIKHAILOV 

The problem of the adiabatic compression of a finite mass of gas with a 
cylindrical or spherical piston is considered. The pressure at the piston 

increases in the peaking mode according to the law P(O,t)= Po(t,m-t)ns,ng= 
-Zr (N + i)l(v + I+ N h- i)), i.e. it becomes infinite as t+tfoe,N= 0,1,2 is 
the symmetry index and y is the adiabatic index. The entropy of the gas 

is distributed over the Lagrangian mass coordinate m:s=In(a,~m-~,~*},~~, 
ml,6 are parameters. The existence of localization of hydrodynamic 
processes is shown for the case when N=O; in spite of the unlimited 
growth of pressure at the piston the perturbations do not penetrate beyond 
a certain finite mass of gas (the region of localization). Outside the 
region of localization the gas is not affected by the piston and remains 
in its initial state. The other effect consists of the formation (when 
a#O) of gas-dynamic structures, including complex .ones such as localized 
temperature or density maxima connected with the fixed mass of gas. 

*Prikl.I4atem.Mekhan.,50,1,119-127,1986 


